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Error threshold transition in the random-energy model
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We perform a statistical analysis of the error threshold transition in quasispecies evolution on a random-
energy fitness landscape. We obtain a precise description of the genealogical properties of the population
through extensive numerical simulations. We find a clear phase transition and can distinguish two regimes of
evolution: The first, for low mutation rates, is characterized by strong selection, and the second, for high
mutation rates, is characterized by quasineutral evolution.
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[. INTRODUCTION and does not ensure the existence of only a single molecular
species. Although the approach used by Franz and co-
Since Eigen’s prominent papgt] describing the evolu- workers for solving the quasispecies model for the REM
tion of self-replicating units subjected to the action of naturallandscape permits the identification of a phase transition, a
selection and mutations, the investigation of evolutionarycomplete description of the phenomenon for finite systems is
models has been a constant issue in the scientific communit§till missing.
The quasispecies model has been used to study a large vari- In this paper, we investigate the random energy landscape
ety of different settings, including time dependent landscapefor the infinite-sites mode]15,16 and consider finite popu-
[2,3], coevolution[4], spatially extended systerfi5], evolu-  lations. Our formulation is based on a statistical analysis of
tion of mutational robustneg$,7], maternal effect§g], and  the genealogical properties of the population. Since the ad-
so on. One of the most intriguing results of the quasispecie¥ent of Kingman’s theory of coalescen¢23], our under-
theory is the existence of an error threshold transition, bestanding of the structure of genealogical trees has vastly im-
yond which the adaptive information in the population isPproved. However, although the coalescence theory is a
lost. The existence of an error threshold transition has beepowerful method for the description of neutral evolution, the
proved rigorously for a simple fitness landscape, the singleinclusion of selection is still a challenge, and many open
peak landscap—12]. The error threshold phenomenon hasduestions remaif24-2§. Here, we examine the genealogi-
also been detected in more complex landscép@sl3. cal process by doing rigorous statistics on two summary
The similarity between the error threshold transition andquantities, the pairwise hamming distance between two indi-
the phase transitions observed in certain physical systemdduals in the population, and the time since their last com-
has motivated the Study of the phenomenon within the conmon ancestor. Since these quantities are well known in cer-
text of statistical mechanics. Leutmsser showed the equiva- tain |Im|t|ng cases, they are well suited for the identification
lence between the quasispecies model and a two-dimensior@ the different regimes of evolution.
Ising system with nearest-neighbor interacti¢tg]. Work
by Galluccio[11] uses ideas and tools borrowed from poly- Il. THE MODEL
mer theory and statistical mechanics to solve exactly the qua- '
sispecies model for the case of a single-peaked landscape. We consider a finite population of constant sigeEach
The resemblance among the landscapes derived from spgelf-replicating unit in the population is represented by an
glass systems and real biological systems makes the formenfinite sequence of siteS=(s;,s,, ... ), where each site
an appropriate model for replication landscap€8,18. In s, can assume two different states, i.8,e{0,1}. In the
this sense, the NK landscapes proposed by Kauffman aneplication process, each sequence acquliresy mutations,
Levin [19] arise as a good description for adaptation land-with probability P, given by a Poisson distribution,
scapes. In investigations of an evolutionary version of the
random-energy modelREM) [20], Franz and co-workers Uk
showed that for a REM landscape the deterministic quasispe- P.=eY PR (D
cies model also exhibits a phase transition, similar to that :
found for the single-peaked landscap®l,22. However,
Franz and co-workers found, for small mutation rates, thevhereU is the mean number of mutations per individual per
existence of afrozenregime, in which the population is generation. Since the sequences are infinitely long, we as-
trapped in an adaptation optimum and all individuals in thesume that new mutations appear only at sites that have never
population are identical. For the single-peaked landscape, tHeeen hit by a mutation, i.e., the probability of producing
equivalent regime is characterized by a stable coexistence oéverse mutations is zero. Thus, we suppose that the state
the master sequence and a cloud of closely related mutants,=0 denotes that the siie has maintained its original state
throughout the evolution process, wheregs- 1 means that
the site @ has been hit by a mutation. This model corre-
*Electronic address: prac@if.sc.usp.br sponds to the celebrated infinite-sites mojdd, 16, which
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FIG. 1. (a) The average time since the most
recent common ancestgmeasured in genera-
tions) as a function oU (mean number of muta-
tions per individual per generatinn(b) The av-
erage hamming distance from the consensus
sequence(measured in number of digjtsas a
function of U. In this plot 3=5.0.

Z
1l

N
=3
=3

N=300

Lol Lol L1
1 10 1 10
U U

1
0.01 vl 1 R TENEn | 1 [

=

<

has been widely used by population geneticists to describeffect the final result. We verified that the use of other forms
the DNA variability observed in samples of genes in the casdor the variance does not reproduce the critical character of

of neutral mutations. the model to be shown in the following.
In order to introduce natural selection, we must define the
fithess dependency on the genotype configuraBomn the Ill. THE GENEALOGICAL PROPERTIES AND RESULTS

random-energy model of Derrid20], the energy levels are

independent random variables, which are drawn from the The relevant features of genealogical trees can be ob-
probability distribution tained from the matrixr={T,,}, whose elements ,, de-
scribe the time in generations since the latest common ances-
1 o tor of individualse and y, and from the matrid={d,,},
P(E)= zexp*E 24 (2  where the elementd,, are the hamming distances between
2mo individuals @ and v, i.e., the number of digits that differ in
the two sequence®7]. During each step of evolution, we
with mean zero and varianeg’. We assume that each indi- ypdate both matrices, and thus we estimate the mean time

vidual contributes offspring to the next generation with prob-since the last common ancestor between two individuals, de-
ability p,s;~e~#E, whereg is the selective pressure on the poted byT, and given by
population. In the reprodution procedure, we employ the
standard genetic algorithm. According to the dynamics, those 1
individuals with higherp,¢; values have a better chance to T= N(N-1) =~
contribute to the composition of the next generation with one
or more offspring. We consider nonoverlapping generationsand the average pairwise hamming distance
i.e., after the reproduction step the old sequences are re-
moved from the population. d= 1 E q
Since we assume infinitely long sequences, which results CN(N-1) & "o
in an infinitely large genotype space, the mean number of
distinct sequences that are produced with time is given by In Fig. 1 we presenf/N andd as a function ofU for
the relationNg=Nt(1—e~ V), wheret is the number of gen- different values oN. The averages were taken after the sys-
erations and the term (e~ V) is the probability of errone- tem had reached the steady state regime. We let the system
ous replication. Sd\ also corresponds to the number of evolve for 98 000 generations, and then carried out a tempo-
states that are visited in an adaptive trajectory whose duraal averaging in the following 2000 generations. The final
tion is t. Henceforth we will consider that the variane@ in results were obtained after averaging over 100 independent
Eg. (2) is a function ofNg. Since in the original random- samples foN=200, 300, and 400, and over 50 independent
energy model the variance is a function of the logarithm ofsamples foiN=1000. AtU=0 the system is in the neutral
the number of states, we assume that the variance is given sggime and sa@/N=1 (not shown on the log scaleAs we
increaseU we observe that the data collapse on a single
o?=1/IN(NXtgimuD» (3 curve that shows an exponential decay. Specifically, we find
that in this regime the quantify/N is well described by the
wheretg;,, is the maximum time of simulation. We neglect relationT/N=e~Y, as corroborated in the figure. The quan-
the term dependent on the mutation rakesince it does not tity e~V is just the probability of exact replication as intro-
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FIG. 2. The mean hamming distandémeasured in number of FIG. 3. Phase diagram: the critical poiat as a function of3.
digits) as a function of the rescaled variaklgU/In N) on a log-log
scale. In this plo{3=5.0. have the highest fithess in the population are able to repro-

duce. However, in order to maintain their selective advantage
duced in the model. This regime corresponds to a strongpr future generations, at least one of those individuals must
selection limit where only the best adapted individuals conbe able to replicate exactly, i.e., it must not acquire any mu-
tribute to the offspring generation. This result is confirmed intation on its genome. Since the probability of exact replica-
part (b) of the same figure. In this region &f we find that  tion isQ=e"Y, the critical pointU= U, at which the selec-

d~2U as expected in the strong selection limit. tive information is no longer sustained, is determined by
From Fig. 1a) we also notice that the point of minimum
of T/N shifts to the right when we increase the population NXQ~1. (6)

size. Beyond the minimum value df, the mean timeT

rapidly reaches a constant value that seems to be indenpefherefore, we deduce thai. is approximately given by
dent ofN. In Fig. 1(b), this behavior is also clearly seen. We U .~InN. Thus the correctly rescaled variable seems to be
observe that, when we increake a transition occurs, and »=U/InN. In Fig. 2 we plotd as a function of the rescaled
the system then changes from an ordered regime to a disovariablew for different values of population size. As we can
dered regime. The ordered phase corresponds to a stromrge, there is a single poiat=w, at which all the lines for
selection regime, at which only those individuals with thesystem sizes intersect with each other.

highest fitness value can replicate. In this phase the average In Fig. 3 we present the phase diagram versusB. We
hamming distance between any pair of individuals is twicecan observe thab, is a monotonically increasing function of
the mean number of mutations in a single lineage, de., the selective strengtf, although the increasing ¢ results
=2U, as discussed above. The disordered phase can be Vir a smaller increase ab.. .

sualized as a quasineutral regime. In this phase, the lines for To conclude, the determination of the phase diagram for
differents values ofN are parallel to the neutral solution the model permits a complete characterization of the error
dneu=2UN, i.e.,d=2CUN, whereC is a constant and thus threshold transition, and also its generalization to finite popu-
the productCN can be interpreted as a measurement of aration sizes. In the previous investigations by Franz and co-
effective population in the population. Actually, the constantworkers[21,27], in addition to the lack the characterization
C is approximately equal to the variance of the offspringof the error threshold transition for finite systems, a complete
distribution as was pointed out in R¢28]. Interestingly, the understanding of the phase diagram was difficult to obtain,
point of minimum inT/N corresponds to the transition point because of the definition of the parametgras a function of
observed ford. We can understand the quantilyN as an  the probability of mutation per site of the sequence, which is
order parameter of the model, abds the control parameter. meaningless for infinite sequences.

As usual in critical phenomena, the transition pount
=U. depends on the system sikke This suggests that we
need to find a rescaling for the control parameter, in order to
obtain a variable that exhibits a unique value for the transi- P.R.A.C. is grateful to J. F. Fontanari and C. O. Wilke for
tion point. In order to measure the dependence of the criticahelpful suggestions and discussions about the problem. This
point U=U. on N, we will focus on the limiting cases research was supported by Fupaade Amparo &Pesquisa
—oo. In this limit, we know that only those individuals that do Estado de RaPaulo, Project No. 99/09644-9.
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