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Error threshold transition in the random-energy model
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~Received 23 August 2002; published 18 December 2002!

We perform a statistical analysis of the error threshold transition in quasispecies evolution on a random-
energy fitness landscape. We obtain a precise description of the genealogical properties of the population
through extensive numerical simulations. We find a clear phase transition and can distinguish two regimes of
evolution: The first, for low mutation rates, is characterized by strong selection, and the second, for high
mutation rates, is characterized by quasineutral evolution.
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I. INTRODUCTION

Since Eigen’s prominent paper@1# describing the evolu-
tion of self-replicating units subjected to the action of natu
selection and mutations, the investigation of evolution
models has been a constant issue in the scientific commu
The quasispecies model has been used to study a large
ety of different settings, including time dependent landsca
@2,3#, coevolution@4#, spatially extended systems@5#, evolu-
tion of mutational robustness@6,7#, maternal effects@8#, and
so on. One of the most intriguing results of the quasispe
theory is the existence of an error threshold transition,
yond which the adaptive information in the population
lost. The existence of an error threshold transition has b
proved rigorously for a simple fitness landscape, the sin
peak landscape@9–12#. The error threshold phenomenon h
also been detected in more complex landscapes@12,13#.

The similarity between the error threshold transition a
the phase transitions observed in certain physical syst
has motivated the study of the phenomenon within the c
text of statistical mechanics. Leutha¨usser showed the equiva
lence between the quasispecies model and a two-dimens
Ising system with nearest-neighbor interactions@14#. Work
by Galluccio@11# uses ideas and tools borrowed from po
mer theory and statistical mechanics to solve exactly the q
sispecies model for the case of a single-peaked landsca

The resemblance among the landscapes derived from
glass systems and real biological systems makes the fo
an appropriate model for replication landscapes@17,18#. In
this sense, the NK landscapes proposed by Kauffman
Levin @19# arise as a good description for adaptation lan
scapes. In investigations of an evolutionary version of
random-energy model~REM! @20#, Franz and co-workers
showed that for a REM landscape the deterministic quasi
cies model also exhibits a phase transition, similar to t
found for the single-peaked landscape@21,22#. However,
Franz and co-workers found, for small mutation rates,
existence of afrozen regime, in which the population is
trapped in an adaptation optimum and all individuals in
population are identical. For the single-peaked landscape
equivalent regime is characterized by a stable coexistenc
the master sequence and a cloud of closely related mut
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and does not ensure the existence of only a single molec
species. Although the approach used by Franz and
workers for solving the quasispecies model for the RE
landscape permits the identification of a phase transition
complete description of the phenomenon for finite system
still missing.

In this paper, we investigate the random energy landsc
for the infinite-sites model@15,16# and consider finite popu
lations. Our formulation is based on a statistical analysis
the genealogical properties of the population. Since the
vent of Kingman’s theory of coalescence@23#, our under-
standing of the structure of genealogical trees has vastly
proved. However, although the coalescence theory i
powerful method for the description of neutral evolution, t
inclusion of selection is still a challenge, and many op
questions remain@24–26#. Here, we examine the genealog
cal process by doing rigorous statistics on two summ
quantities, the pairwise hamming distance between two in
viduals in the population, and the time since their last co
mon ancestor. Since these quantities are well known in
tain limiting cases, they are well suited for the identificati
of the different regimes of evolution.

II. THE MODEL

We consider a finite population of constant sizeN. Each
self-replicating unit in the population is represented by
infinite sequence of sitesS5(s1 ,s2 , . . . ), where each site
sa can assume two different states, i.e.,saP$0,1%. In the
replication process, each sequence acquiresk new mutations,
with probability Pk given by a Poisson distribution,

Pk5e2U
Uk

k!
, ~1!

whereU is the mean number of mutations per individual p
generation. Since the sequences are infinitely long, we
sume that new mutations appear only at sites that have n
been hit by a mutation, i.e., the probability of producin
reverse mutations is zero. Thus, we suppose that the
sa50 denotes that the sitea has maintained its original stat
throughout the evolution process, whereassa51 means that
the sitea has been hit by a mutation. This model corr
sponds to the celebrated infinite-sites model@15,16#, which
©2002 The American Physical Society04-1
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FIG. 1. ~a! The average time since the mo
recent common ancestor~measured in genera
tions! as a function ofU ~mean number of muta-
tions per individual per generation!. ~b! The av-
erage hamming distance from the consens
sequence~measured in number of digits! as a
function of U. In this plotb55.0.
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has been widely used by population geneticists to desc
the DNA variability observed in samples of genes in the c
of neutral mutations.

In order to introduce natural selection, we must define
fitness dependency on the genotype configurationS. In the
random-energy model of Derrida@20#, the energy levels are
independent random variables, which are drawn from
probability distribution

P~E!5
1

A2ps2
exp2E2/2s2

~2!

with mean zero and variances2. We assume that each ind
vidual contributes offspring to the next generation with pro
ability po f f;e2bE, whereb is the selective pressure on th
population. In the reprodution procedure, we employ
standard genetic algorithm. According to the dynamics, th
individuals with higherpo f f values have a better chance
contribute to the composition of the next generation with o
or more offspring. We consider nonoverlapping generatio
i.e., after the reproduction step the old sequences are
moved from the population.

Since we assume infinitely long sequences, which res
in an infinitely large genotype space, the mean numbe
distinct sequences that are produced with time is given
the relationNs5Nt(12e2U), wheret is the number of gen-
erations and the term (12e2U) is the probability of errone-
ous replication. SoNs also corresponds to the number
states that are visited in an adaptive trajectory whose d
tion is t. Henceforth we will consider that the variances2 in
Eq. ~2! is a function ofNs . Since in the original random
energy model the variance is a function of the logarithm
the number of states, we assume that the variance is give

s251/ln~N3tsimul!, ~3!

wheretsimul is the maximum time of simulation. We negle
the term dependent on the mutation rateU, since it does not
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affect the final result. We verified that the use of other for
for the variance does not reproduce the critical characte
the model to be shown in the following.

III. THE GENEALOGICAL PROPERTIES AND RESULTS

The relevant features of genealogical trees can be
tained from the matrixT5$Tag%, whose elementsTag de-
scribe the time in generations since the latest common an
tor of individualsa and g, and from the matrixd5$dag%,
where the elementsdag are the hamming distances betwe
individualsa andg, i.e., the number of digits that differ in
the two sequences@27#. During each step of evolution, w
update both matrices, and thus we estimate the mean
since the last common ancestor between two individuals,
noted byT, and given by

T5
1

N~N21! (
a,g

Tag , ~4!

and the average pairwise hamming distance

d5
1

N~N21! (
a,g

dag . ~5!

In Fig. 1 we presentT/N and d as a function ofU for
different values ofN. The averages were taken after the sy
tem had reached the steady state regime. We let the sy
evolve for 98 000 generations, and then carried out a tem
ral averaging in the following 2000 generations. The fin
results were obtained after averaging over 100 indepen
samples forN5200, 300, and 400, and over 50 independe
samples forN51000. At U50 the system is in the neutra
regime and soT/N51 ~not shown on the log scale!. As we
increaseU we observe that the data collapse on a sin
curve that shows an exponential decay. Specifically, we
that in this regime the quantityT/N is well described by the
relationT/N5e2U, as corroborated in the figure. The qua
tity e2U is just the probability of exact replication as intro
4-2
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duced in the model. This regime corresponds to a str
selection limit where only the best adapted individuals c
tribute to the offspring generation. This result is confirmed
part ~b! of the same figure. In this region ofU we find that
d'2U as expected in the strong selection limit.

From Fig. 1~a! we also notice that the point of minimum
of T/N shifts to the right when we increase the populati
size. Beyond the minimum value ofU, the mean timeT
rapidly reaches a constant value that seems to be inden
dent ofN. In Fig. 1 ~b!, this behavior is also clearly seen. W
observe that, when we increaseU, a transition occurs, and
the system then changes from an ordered regime to a d
dered regime. The ordered phase corresponds to a st
selection regime, at which only those individuals with t
highest fitness value can replicate. In this phase the ave
hamming distance between any pair of individuals is tw
the mean number of mutations in a single lineage, i.e.d
52U, as discussed above. The disordered phase can b
sualized as a quasineutral regime. In this phase, the line
differents values ofN are parallel to the neutral solutio
dneut52UN, i.e.,d52CUN, whereC is a constant and thu
the productCN can be interpreted as a measurement of
effective population in the population. Actually, the consta
C is approximately equal to the variance of the offspri
distribution as was pointed out in Ref.@28#. Interestingly, the
point of minimum inT/N corresponds to the transition poin
observed ford. We can understand the quantityd/N as an
order parameter of the model, andU is the control parameter

As usual in critical phenomena, the transition pointU
5Uc depends on the system sizeN. This suggests that we
need to find a rescaling for the control parameter, in orde
obtain a variable that exhibits a unique value for the tran
tion point. In order to measure the dependence of the crit
point U5Uc on N, we will focus on the limiting caseb
→`. In this limit, we know that only those individuals tha

FIG. 2. The mean hamming distanced ~measured in number o
digits! as a function of the rescaled variablev (U/ ln N) on a log-log
scale. In this plotb55.0.
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have the highest fitness in the population are able to re
duce. However, in order to maintain their selective advant
for future generations, at least one of those individuals m
be able to replicate exactly, i.e., it must not acquire any m
tation on its genome. Since the probability of exact replic
tion is Q5e2U, the critical pointU5Uc at which the selec-
tive information is no longer sustained, is determined by

N3Q;1. ~6!

Therefore, we deduce thatUc is approximately given by
Uc' ln N. Thus the correctly rescaled variable seems to
v5U/ ln N. In Fig. 2 we plotd as a function of the rescale
variablev for different values of population size. As we ca
see, there is a single pointv5vc at which all the lines for
system sizes intersect with each other.

In Fig. 3 we present the phase diagramvc versusb. We
can observe thatvc is a monotonically increasing function o
the selective strengthb, although the increasing ofb results
in a smaller increase ofvc .

To conclude, the determination of the phase diagram
the model permits a complete characterization of the e
threshold transition, and also its generalization to finite po
lation sizes. In the previous investigations by Franz and
workers@21,22#, in addition to the lack the characterizatio
of the error threshold transition for finite systems, a compl
understanding of the phase diagram was difficult to obta
because of the definition of the parametervc as a function of
the probability of mutation per site of the sequence, which
meaningless for infinite sequences.
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FIG. 3. Phase diagram: the critical pointvc as a function ofb.
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